How to use the macros for the comparison of *MuKpi* macro with GEANT #### J. Bouchet October 13, 2008 The current location of the code is at : /star/institutions/emn/bouchet/Joe/ I use *STARPRO* version. ### 1 Brief introduction to the code There are 3 macros to use in order to plot comparison (of p_T , decaylength,etc ...) of D^0 reconstructed by MuKpi and the initial input from GEANT: • geant_out_all.C1 : run over .geant.root file • myMuKpi.C : run over .MuDst.root file • readHisto.C: make histogram The idea is to create histogram from the GEANT input, then from the MuDst input and combine them. #### 1.1 geant_out_all.C the output file name is myresults_geant.root you have to set the number of files to set; there is a link in the macro to the D^0 pure sample list I used: mypureD0listGeant2.list. We know that for each file, 400 D^0 are in, then I declare 400×NFile histograms for the p_T and decay length of D^0 : - 1. : hpTDOGEANT_CurrentFile : it is a 1-D histogram with X-axis from 1 to 400 (number of event Id in this file). the Y-axis will have the value of the p_T of the D^0 (see figure 1) - 2. : hDecay_CurrentFile : it is a 1-D histogram with X-axis from 1 to 400 (number of event Id in this file). the Y-axis will have the value of the decay length of the D^0 Figure 1: for a given file : X-axis : number of event ; Y-axis : the peak gives the value of the p_T of the D^0 There are not cut in this macro: we have to fill all the D^0 reconstructed: we select them by looping over the $g2t_Track_table$ and by requiring that the GEANT_id of the current track is 37 and that the vertex id of this track has the same id of the vertex of the next tracks (stop_vertex_id(i) = start_vertex_id(i+1)). The decay length is calculated as: $$DL = \sqrt{\overrightarrow{L}} \overrightarrow{L}$$ (1) where \overrightarrow{L} is a vector which components are : $L_i = SecondaryVertex_i - PrimaryVertex_i, \ \text{with i} = \{\texttt{x}, \texttt{y}, \texttt{z}\}$ ## 1.2 myMuKpi.C This macro is the same as we used previously, so it has some cuts related to event position, quality of tracks. The same histogram as in *geant_out_all.C* are also filled in this macro; their names ares: - 1. hpTD0_CurrentFile - 2. hdLD0_CurrentFile The p_T is calculated as : $$p_T = PP[s].Perp(); (2)$$ ¹the name of output and macro don't make any differences: you can recall them as you want ,where PP is the TLorentzVector from the association of positive and negative tracks. DL is calculated as: $$DL = \sqrt{diff_x^2 + diff_y^2 + diff_z^2}$$ (3) , where $diff_i = dl_i$ - $PrimaryVertex_i$ with dl (0-field approximation) from DCA_xy and DCA_z of daughter tracks. Figure 2: for a given file : X-axis : number of event ; Y-axis : the peak gives the value of the p_T of the D^0 From Fig. 2, we see that the number of entries (for the same file) is much lower that in GEANT; it is because of the cuts apply in the macro that removes some events #### 1.3 readHisto.C The last par tis to make association : this macro open the 2 root files where histograms are written. For each file processed : - 1. retrieve the proper histogram from the first root file - 2. loop over the bin x (event Id) and get the p_T value - 3. for the current bin, open the second root file and get the same p_T if it exists - 4. fill some histograms The histograms write the difference p_T^{GEANT} - p_T^{MuKpi} as a function of p_T^{GEANT} in order to use Fit-SlicesY() from ROOT to plot the mean and σ . Figure 3: Distribution of p_T^{GEANT} - p_T^{MuKpi} Figure 4: Distribution of p_T^{GEANT} - p_T^{MuKpi} vs p_T^{GEANT} The next histograms are the results from *FitSlicesY()* Figure 5: Mean and σ of Δp_t